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Abstract: Remote sensing-based crop monitoring has evolved unprecedentedly to supply multispec-
tral imagery with high spatial-temporal resolution for the assessment of crop evapotranspiration
(ETc). Several methodologies have shown a high correlation between the Vegetation Indices (VIs) and
the crop coefficient (Kc). This work analyzes the estimation of the crop coefficient (Kc) as a spectral
function of the product of two variables: VIs and green vegetation cover fraction (fv). Multispectral
images from experimental maize plots were classified to separate pixels into three classes (vegetation,
shade and soil) using the OBIA (Object Based Image Analysis) approach. Only vegetation pixels
were used to estimate the VIs and fv variables. The spectral Kcfv:VI models were compared with Kc
based on Cumulative Growing Degree Days (CGDD) (Kc-cGDD). The maximum average values of
Normalized Difference Vegetation Index (NDVI), WDRVI, amd EVI2 indices during the growing
season were 0.77, 0.21, and 1.63, respectively. The results showed that the spectral Kcfv:VI model
showed a strong linear correlation with Kc-cGDD (R2 > 0.80). The model precision increases with
plant densities, and the Kcfv:NDVI with 80,000 plants/ha had the best fitting performance (R2 = 0.94
and RMSE = 0.055). The results indicate that the use of spectral models to estimate Kc based on
high spatial and temporal resolution UAV-images, using only green pixels to compute VI and fv crop
variables, offers a powerful and simple tool for ETc assessment to support irrigation scheduling in
agricultural areas.

Keywords: Growing Degree Days; crop water requirements; irrigation management; remote sens-
ing; OBIA

1. Introduction

Crop water requirement (CWR) is the water needed to compensate for water vapour
released into the atmosphere by evapotranspiration (ETc) and is one of the most critical
variables in irrigated agriculture to better match water demand with irrigation supply [1].
There are several practical methodologies to estimate ETc. The most used method in
the irrigation practice is well described in the FAO-56 manual [2], which is based on the
knowledge of two variables: the reference evapotranspiration (ETo), representing the
atmospheric evaporative demand, and the basal crop coefficient (Kcb), representing the
water crop factors.

The ETo values represent the evaporative effects of environmental conditions on
the evapotranspiration process and are commonly estimated by equations using weather
data [3]. The Kcb coefficient is species-specific and varies according to the phenology,
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environmental conditions, and available soil moisture in which the crop is grown under
standard conditions [4,5].

According to the FAO-56 method, Kcb values are represented by four simplified lines,
which vary according to the phenological stages: seedling, vegetative growth, intermediate,
and maturity. However, these Kcb values must be calibrated to local conditions [5].

Crop phenology reflects the timing of biological events, and it plays an important
role in crop management to couple farm-level input demands with applications. Most
models used to simulate crop development assume a linear relationship between air
temperature and phenological development rate using the Growing Degree Days (GDD)
concept. GDD considers the effects of temperature variation on phenology, and it has been
applied successfully to improve the estimates of crop development under different weather
conditions [6]. The GDD represents a thermal day index defined as the integration of the
ambient temperature curve between two temperatures that define the range where crop
growth occurs.

In this approach, Kcb can be expressed as a function on Cumulative Growing Degree
Days (CGDD) as proposed by Ojeda-Bustamante et al. [6]. The expression of Kcb as a
function of thermal time is more versatile and easier for computational implementation.
However, it has the disadvantage of demanding local meteorological information and
needing validation in large areas with highly spatial-temporal crop variation. Under
stress conditions, Kcb is affected by water stress factors and Kcb is transformed in Kc that
considers non-standard conditions [1].

Crop monitoring is required to obtain detailed information on the spatial-temporal
variability of agricultural variables affecting crop canopy, the main driver of Kc. An
alternative to estimating Kc is using remote sensing reflectance values to monitor crop
biophysical parameters associated with crop water requirements [7–9].

The canopy interception of solar energy is the main driver of crop evapotranspiration.
The temporal variation of sunlight interception is a direct function of leaf area. Some
researchers [10,11] have reported a strong connection between Kc and canopy reflectance
values at different scales. Several studies also have indicated the high correlation between
vegetation biophysical characteristics and the reflectance values of spectral images [12,13].

There are many studies to estimate Kc as a function of vegetation indices (VIs) obtained
from satellite images and validated with field observations [5,14,15]. The most used indices
to estimate Kc are the NDVI (Normalized Difference Vegetation Index) [7,16–18] and the
SAVI (Soil Adjusted Vegetation Index) [7,17,19,20]. Odi-Lara et al. [21] and Allen et al. [22]
reported that the Kc coefficient was successfully estimated with NDVI and SAVI indices.
However, NDVI and SAVI have disadvantages when correlated with some biophysical
characteristics, such as crop phenology, because their relationship is non-linear. VI values
can reach saturation with an asymptotic approach when the crop canopy is from moder-
ate to high [23]. Remote sensing data are useful to characterize important agronomical
variables in large areas, supported by the high crop functional correlation between the
biophysical characteristics and spectral properties. Several studies show that the VIs-Kc
relationship is imprecise in early phenological stages with low crop canopy [9]. Usually,
spectral-based VI estimation does not separate crop canopy from the soil surface, which
generates high bias under incomplete canopy cover since dark-coloured soil produces
larger VI values than light-coloured soils [24].

Diverse remote sensing satellite platforms provide multispectral images to estimate
vegetation indices with limited spatial resolution. Hence, a more widely used alternative is
Unmanned Aerial Vehicles (UAVs) equipped with high-resolution digital cameras. Such
UAVs can be deployed repeatedly, at low cost, with greater flexibility in altitude and higher
spatial and temporal resolutions [25]. The use of UAVs for agricultural monitoring has
multiplied in recent years [26] thanks to the smaller size and lower cost of multispectral
and thermal cameras [27]. However, VIs generated from multispectral images of high
spatial resolution require validation at a local scale to estimate the Kc spatial variation with
good precision [18].
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Green Vegetation Cover Fraction (fv) has also been used for studying the phenological
and physiological status of vegetation [28], estimating crop yields and monitoring crop
developmental stages [29]. Marcial-Pablo et al. [30] showed that fv could be estimated with
precision from VI indices from UAV-based RGB and multispectral images. Since VIs and fv
are correlated with crop phenology and crop canopy density, it is necessary to study their
correlation with Kc. Johnson and Trout [31] reported that Kc can be estimated based on fv
indices with the support of vegetation indexes. Several authors reported a strong relation
of fv and VIs with biophysical variables such as Fraction of Absorbed Photosynthetically
Active Radiation (fAPAR), an important variable in the agricultural monitoring [32,33].

ETc estimation has focused on standardized crop conditions and full irrigation con-
ditions [34]. There are very robust methodologies to estimate Kcb based on thermal time
expressed as a continuous function of Cumulative Growing Degree Days (CGDD) re-
ported by Ojeda-Bustamante et al. [6]. CGDD-based functions are considered a suitable
option to account for the climate variability on crop growth and phenological develop-
ment. However, Kc under non-standard conditions is important to know for crops with
highly-variable water demands. For better water planning and management, and given
the limited meteorological information in many agricultural zones, it is necessary to use
geospatial technologies to indirectly estimate crop water demands. Remote sensing data
have been used to assess water stress in non-standard conditions of various crops using
low resolution such as satellites images and high resolution (UAV) imagery [18].

The existing research has been concentrated on using spectral data to estimate crop
coefficient (Kc) based mainly on a linear relationship either with the vegetation index or
with vegetation cover fraction. However, with the availability of high spatial and temporal
resolution images and better image analysis algorithms, it is now better to split and classify
pixels of vegetation, shadow, and soil and isolate their effects and result in better spectral
models to fit experimental Kc data.

Therefore, the purpose of this paper was to estimate the maize crop coefficient (Kc) as
a function of the product of spectral vegetation indices (VIs) and Vegetation Cover Fraction
(fv), using high-resolution multispectral UAV-images and an efficient OBIA-based approach
to classify image pixels. The proposed methodology was validated using Kc, estimated
with a Cumulative Growing Degree Days (CGDD) approach, and gathered experimental
data with two planting densities.

2. Materials and Methods
2.1. Study Area and Site Data

The field study was conducted in the experimental station (Figure 1) of the National
Institute of Forestry, Agriculture and Livestock Research (INIFAP) in Zacatepec, in the
Southern State of Morelos, Mexico (18◦ 39′ 6.45” N and 99◦ 11′ 59.63” W). The climate in
the study area is hot sub-humid, with average annual temperature and precipitation of
24.3 ◦C and 892 mm, respectively; the rainy season is from mid-May to October, and the
dry season, November to mid-May.

The experimental cropped area was 1 ha, sowed with maize hybrid H-515 on 5 July
2016. Twenty-four lots of 6 m × 25 m were planted with a furrows’ separation of 0.8 m
at two plant densities (60,000 and 80,000 plants/ha). The volumetric field capacity (FC)
and permanent wilting point (PWP) soil water content were 41% and 22.5%, respectively.
Weather daily data were available from a meteorological station located at 160 m of the
study area (18◦ 39′ 11.19′ ′ N and 99◦12′ 00.47′ ′ S).
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Figure 1. Location of the study area: (a) macro-location, (b) experimental plots, (c) flight path of Unmanned Aerial Vehi-
cles (UAV), (d) UAV acquiring aerial images, (e) plots’ maize in two growth stages. 
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and compared with measured lysimeter ET under different climatic conditions. Howev-
er, the FAO Penman--Monteith method is reliable and physically-based and adopted as 
the standard method for ETo computation [1,2]. With data registered in weather stations, 
the PM method estimates ETo as a function of net radiation, soil heat flux, wind speed, 
air temperatures, vapour pressure, and other coefficients as described in Allen et al. [1]. 

The crop coefficient Kc is a crop-specific coefficient representing the physical and 
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Kc values for annual crops increase from a minimum value at planting until reaching a 
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Figure 1. Location of the study area: (a) macro-location, (b) experimental plots, (c) flight path of Unmanned Aerial Vehicles
(UAV), (d) UAV acquiring aerial images, (e) plots’ maize in two growth stages.

2.2. Crop Evapotranspiration (ETc)

Crop Evapotranspiration (ETc) is rarely measured in the field and is usually estimated
by multiplying the reference evapotranspiration (ETo) with a crop coefficient (Kc) [1,2,6].

ETc = Kc× ETo (1)

Many equations have been developed to estimate ETo and extensively evaluated
and compared with measured lysimeter ET under different climatic conditions. However,
the FAO Penman–Monteith method is reliable and physically-based and adopted as the
standard method for ETo computation [1,2]. With data registered in weather stations, the
PM method estimates ETo as a function of net radiation, soil heat flux, wind speed, air
temperatures, vapour pressure, and other coefficients as described in Allen et al. [1].

The crop coefficient Kc is a crop-specific coefficient representing the physical and
physiological differences between a specific crop and the reference crop, considering the
relationship between the atmosphere, crop physiology, and agricultural practices [1,2,15].
Kc values for annual crops increase from a minimum value at planting until reaching
a maximum value at full canopy cover. One of the main limitations of this approach is
to generate specific Kc values instead of using the general FAO Kc curves supplied by
Allen et al. [1].

2.3. Estimation of GDD-Based Crop Coefficient (Kc)

Under water stress conditions and neglecting soil water evaporation, the crop coeffi-
cient (Kc) can be estimated using the following equation [1]:

Kc = Kcb×Ks (2)

Kcb is the basal crop coefficient obtained under optimal crop development conditions,
and Ks is the soil’s water stress coefficient. Kcb was estimated using a GDD-based approach
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with Equation (3) proposed by Ojeda-Bustamante et al. [6], as a function of the cumulative
Growing Degree Days (xn) to day i.

Kcbi = Kmaxerfc

((
xi − xKmax

α1

)2
)

; If Kc < Kc0, then Kc = Kc0 (3)

Kc0 is the basal crop coefficient for the first phenological stage that depends essentially
on soil evaporation; Kmax is the maximum value of the basal crop coefficient (Kcb) during
the growing period; erfc is the complement error function; xi is the cumulative Growing
Degree Days (CGDDi) elapsed until the day i from sowing or crop emergence, normalized
to the maximum CGDD value required to complete the phenological cycle (CGDDx), i.e.,
xi = CGDDi/CGDDx; xKmax is the normalized dimensionless value x when the maximum
value Kmax is reached; α1 is the regression coefficient obtained from fitting the model to
the experimental data.

The Cumulative Growing Degree Days (CGDD) are calculated as the accumulated
daily Degree Days (GDD) according to the following Equation (4) used by
Ojeda-Bustamante et al. [6].

GDDi = Ta − Tc−min, Ta < Tc−max
GDDi = Tc−max − Tc−min, Ta ≥ Tc−max

GDDi = 0, Ta ≤ Tc−min

(4)

Ta is the average daily air temperature, Tc−min and Tc−max are the basal (10 ◦C) and
maximum (30 ◦C) growing temperatures for maize [35]. The stress adjusted crop coefficient
of the day i (Ksi) was determined as a function of the available soil water for day i (AWi) as
used by Jensen et al. [36]:

Ksi =
ln(AWi + 1)

ln(101)
(5)

Ojeda-Bustamante et al. [37] calibrated and validated the above equations for fully
irrigated maize with a planting density of 95,000 plants/ha, obtaining the following pa-
rameters: Kmax = 1.25, Kc0 = 0.2, XKmax = 0.59. In our study, for plant densities of 60,000
and 80,000, the Kmax values were estimated at 1.03 and 1.10, respectively.

Daily values of Kc were estimated using the methodology and information validated
for the study area as reported by Ojeda-Bustamante et al. [6] and adjusted under field
conditions considering the experiment’s planting densities.

2.4. UAV Multispectral Image Acquisition and Orthomosaic Generation

UAV multispectral images were acquired during the growing season as described
as follows. Twelve Ground Control Points (GCPs) evenly distributed over the study area
were placed and georeferenced with a TopCon model GR-5 GPS RTK with a vertical and
horizontal accuracy of <1 cm. The hexacopter UAV used was a DJI A2 model (equipped
with IMU) with a maximum load capacity of 2.5 kg and top ascent and descent speed of
6 m/s. The UAV was equipped with Tetracam ADC Snap (Tetracam Inc. Chatsworth, CA,
USA) three-band multispectral camera (Table 1).

Two flights (Figure 1c) were made on six different dates (from August to October, 2016,
between 11:00 and 13:00 local time). The effective flight time for each date was 11 min and
the average flight height was 50 m above the ground (GSD = 2.1 cm/pixel). Image overlap
was 75% (front and side overlap) (Table 2). The flights were planned and executed during
the clear sky condition with the UgCS software (SPH Engineering, Riga, Latvia).
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Table 1. UAV camera specifications.

Characteristics Description

Imaging sensor Tetracam ADC Snap
Sensor Type CMOS global shutter

Sensor size (mm) 6.59 × 4.9
Resolution (pixels) 1280 × 1024 (1.3 Mp)
Focal length(mm) 8.43

Spectral bands
G: green (520–600 nm)

R: red (630–690 nm)
NIR: near-infrared (760–900 nm)

Dimensions (mm) 75 × 59 × 33
Weight (g) 90

Table 2. Description of flight characteristics for image acquisition.

No. Acquisition Date Flight Local Time Wind Speed (m/s) Temperature (◦C)

1 26 August 13:00 1.1 29.0
2 15 September 12:00 0.8 28.0
3 28 September 12:00 1.0 25.5
4 6 October 12:00 1.0 26.0
5 13 October 11:00 1.1 23.5
6 26 October 12:00 1.1 24.5

RAW images acquired by the sensor are then radiometrically calibrated in post-
processing using PixelWrench2 software, thanks to a calibration target (spectralon) acquired
before each flight. The digital elevation model and orthomosaic were generated using
Pix4D software (Pix4D SA, Prilly, Switzerland) as shown in the Figure 2. Figure 3 shows as
example, two multispectral orthomosaics obtained from photogrammetric processing of
UAV images at the phenological stages.
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and beginning maturity (right) in three views and two density plants plots.

2.5. Image Classification and Estimation of GreEN Vegetation Cover Fraction (fv)

The classification of orthomosaics was performed using the OBIA approach. The
OBIA detectors were implemented using eCognition developer 9.0 (Trimble GeoSpatial,
Munich, Germany). OBIA combines spectral, contextual, and morphological information
of the objects created in the segmentation [39] and minimizes the average heterogeneity of
the objects in the image [40]. Several papers show the successful use of this methodology
to analyze high-resolution spatial images taken with UAV [41–43].

Two stages are involved in an OBIA approach: image segmentation and classification.
Orthomosaics was segmented using the multi-resolution segmentation (MRS) algorithm
that use three criteria (scale, shape, and compactness) to generate the segments. The values
of the final configuration for the scale parameter, shape, and compactness were: 25, 0.3,
and 0.5, respectively, as proposed by Drǎguţ et al. [44] and Drǎguţ et al. [45]. The output of
this step produced homogeneous segments of different sizes.

Finally, the classifications with three classes (vegetation, shadow, and soil) were based
on the segments generated (Figure 4). The method described by Marcial-Pablo et al. [30]
was adapted to classify the orthomosaic into three classes.
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Figure 4. Resulting processed UAV-images for (a) Ortomosaic (b) OBIA segmentation, classification
images with (c) three classes (vegetation, soil, shadow) and (d) only one class (vegetation).

In this way, fv values are only estimated on vegetation pixels. The fv values for each
plot were obtained by the following equation.

fv = Number of vegetation pixels/Number of (vegetation + non-vegetation) pixels (6)

2.6. Estimation Vegetation Indices

There is a vast repository of vegetation indices used to explain vegetation character-
istics related to ET. NDVI is probably the most widely used spectral index. However, in
studies with satellite imagery, it can be affected by changes in soil background brightness
and atmospheric effects caused by scattering and absorption by aerosols. In this study
the use of UAV imagery can overcome these limitations. VIs such as EVI2 and WDRVI,
improved versions of EVI and RDVI, offer better results by overcoming the absence of a
blue band or the non-linear relationship with LAI or VF in satellite images. However, so far,
these indices have been little studied in UAV images. Table 3 shows the VIs calculated for
the six segmented multispectral orthomosaics using the QGIS software. VIs was estimated
using two cases: using all pixels and using vegetation pixels only. A Tukey’s mean test
(p ≤ 0.10) was used to analyze if there were significant differences between VIs value
obtained from Case 1 and Case 2.

Table 3. Vegetation indices calculated for UAV orthomosaic images.

VIs Abbreviation Equation Reference

Normalized Difference Vegetation Index NDVI NIR−R
NIR+R [46]

Wide Dynamic Range Vegetation Index WDRVI αNIR−R
αNIR+R [47]

2-band Enhanced Vegetation Index EVI2 2.5
(

NIR−R
NIR+2.4R+1

)
[48]

Note: α is weighting coefficient of 0.2 according to [47].

Increasing positive NDVI values indicate increasing amounts of green vegetation [49]
because healthy vegetation has a low reflectance of red light and high reflectance of
near-infrared, which results in high NDVI values. NDVI is closely related to biophysical
vegetation parameters, such as LAI, but has the drawback that it loses sensitivity to change
when it reaches a threshold and becomes saturated. This saturation is because chlorophyll
is a very efficient absorber of red radiation, and therefore, as plant biomass increases, red
reflectance will not change. On the other hand, several spectral indices such as WDRVI
and EVI2 are suitable in UAV imagery without the saturation limitation [50].
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WDRVI shows greater sensitivity to changes in leaf area index (LAI) values from
moderate to high (between 2 and 6) than the NDVI and maintains a linear relationship
with the LAI of maize and soybeans [47,51].

EVI2 considers two bands of the enhanced vegetation index (EVI); it has been devel-
oped for sensors without a blue band. Besides, similar to EVI, it maintains improved sensi-
tivity and linearity in high biomass and LAI regions [52]. EVI2 captures spatial-temporal
variation in photosynthetically active vegetation [48] and is less prone to saturation in
dense vegetation cover and less sensitive to different soil reflectances [53]. EVI2 is better
than NDVI at discriminating land cover diversity [54] and capturing vegetation condition
and structure changes [53]. However, the seasonal variation of EVI2 in arid and semi-arid
zones is not as strong as in the NDVI [55]. The three spectral vegetation indices’ values
(VIs) were normalized to a scale of 0 to 1 for equally and better comparison.

2.7. Estimation Crop Coefficient Based fv:VIs (Kcfv:VI)

Several studies demonstrate that the use of spectral vegetation indices from near-
infrared (NIR) and visible regions has a linear correlation with the interception of sunlight
from the canopy [56,57]. Kc obtained from vegetation indices are more robust than assum-
ing standard conditions (Kcb) since they estimate current crop conditions [34]. Since high
VI values indicate plant areas under optimal conditions, it was assumed that the model
Kc = f(fv × VIs) is better than the simpler model Kc = f(VIs) used in most studies [11,34].
Therefore, Kc has been estimated as a function of two independent relationships: Kc = f(VIs)
and Kc = f(fv), as reported by Johnson and Trout [31]. Moreover, direct estimation of Kcb has
been documented by Pôças et al. [15] using sophisticated equations as a function of fv and
VIs. Vegetation Cover Fraction (fv) describes a vertical projection of the areal proportion of
a landscape occupied by green vegetation [58]. Grattan et al. [59] and Pôças et al. [15] have
reported a strong correlation between fv and Kc.

Kc based on VIs and fv was estimated using the following equation:

(green pixels only, using VIs and fv): Kcfv:VIs = a + b ∗ (fv ∗ VIs)Vegetation pixels (7)

where a and b are fitting parameters between CGDD-based Kc data and predicted data by
the three models.

Evaluation of Model Performance

Predicted (Kcfv:VIs) and observed Kc-cGDD values were compared using correlation
analysis and linear regression (including 95% confidence prediction intervals). Several
statistical parameters were calculated, mean square error (MSE), root mean square error
(RMSE), mean absolute error (MAE), efficiency (E), and coefficient of variation (CV), to
assess the performance of the regression model, using the equations (8 to 12) [60,61].

CME =
∑n

i=1(Oi − Pi)
2

n
(8)

RMSE =

√
∑n

i=1(Oi − Pi)
2

n
(9)

MAE =
∑n

i=1|Oi − Pi|
n

(10)

E = 1− ∑n
i=1(Oi − Pi)

2

∑n
i=1(Oi −Om)2 (11)

CV =
RMSE

Om
× 100 (12)

Oi are the observed values (Kc-cGDD), Pi are the predicted values Kcfv:VI, Om is the
mean observed value, and n is the total number of samples.
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3. Results and Discussion
3.1. Maize Crop Coefficient CGDD-Based (Kc-cGDD)

The maize phenological duration was 119 days (from planting to physiological matu-
rity), equivalent to 1655 GDDs. The Kc values are detailed in Table 4 and Figure 5, which
shows that the peak Kc values are in the blister-milk stages.

Table 4. Estimated crop coefficient values (Kc-cGDD) for phenological stages and two density plants.

ID Phenological Stages
Kc-cGDD

CGDD
80,000 Plants/ha 60,000 Plants/ha

1 Planting—2 leaves 0.15 0.15 300
2 2–12 leaves 0.15–1 0.15–0.93 300 a 700
3 Silk—Blister 1.00–1.15 0.93–1.03 700 a 1050
4 Milk—Dough 1.10–0.4 1.03–0.370 1050 a 1400
5 Dent—Maturity 0.4–0.3 0.37–0.28 1400 a 1650
6 Harvest 0.3–0.18 0.28–0.2 >1650
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stressed conditions.

The simulated Kc values (Figure 5), for both plan densities, show good agreement
between the optimal (Kcb) and stressed (Kc) curve, indicating a good match between crop
water demands and rainfall, with small differences during blister and milk stages. As
expected, Kc values are higher for higher plant density (80,000 plants/ha) because of the
higher vegetation coverage due to high crop biomass.
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3.2. Vegetation Indices (VIs)—CGDD Relationship

A Tukey HSD test (p ≤ 0.10) reflected that there are statistically significant differences
between VIs values obtained from case 1 (considering three classes) and for case 2 (consid-
ering one class) (RMSE = 0.66; p = 0.00) mainly due to the effect when considering shade
and soil pixels [62]. This difference is not detectable at larger spatial resolutions, as in
satellite images, where pixel disaggregating is not possible. In that sense, case 2 was used
in this work because it has better results and better represents the characteristics of the
vegetation in the field.

The normalized values of NDVI, WDRVI, and EVI2 vegetation indices obtained for
case 2, using only vegetation pixels of the all plots (two densities plants), are compared with
the cumulative GDD values calculated for the day of flights (Figure 6). The normalized
values of average VIs range from 0.45–0.60 (750 CGDD) in the early stages, 0.93–0.98 (1033
CGDD) in silks, 0.78–0.88 (1206 CGDD) in milk stage, 0.27–0.76 (1319 to 1417 CGDD)
in dough-dent grain stages, and 0–0.15 (>1550 CGDD) in the maturity stage, with an
average standard deviation between 0.01 to 0.03 for all stages. In this work, the VIs values
show more variability in the maturity stages by leaf moisture and colour changes, which
coincides with Xin et al. [63]. Besides, our results show that the VIs tends to decline after a
full cover is reached in the crop season, similar to Kc [4].
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The results are comparable to those reported by Calera et al. [64], who obtained
NDVI values between 0.10 and 0.85 (with a peak at flowering) using Landsat 7 images.
Also by Gitelson et al. [65], who found NDVI values from 0.28 to 0.85 for vegetative and
reproductive stages, respectively, using MODIS images, and by Raun et al. [66] with peak
NDVI values (0.77 to 0.73) at flowering, estimated with a Greenseeker sensor.

Most remarkable differences between NDVI, EVI2, and WDRVI occurred in the early
and late stages, where EVI2 and WDRVI are more sensitive to vegetation changes than
NDVI. In this regard, Guzinski [67] reports that although the three indices were useful
for estimating crop phenology, there are differences between them when the crop canopy
density changes drastically in the early and late stages.
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3.3. fv:VIs Approach for Kc Estimation

The high spatial resolution of UAV imagery, as calculated for case 2, improves the
accuracy of clustering, detection, and classification of pixel classes and thus increases the
ability to recognize vegetation characteristics from vegetation indices. A strong linear
correlation (R2 > 0.8) between VIs from green vegetation pixels and Kc-cGDD values was
found in the study. Therefore, considering both fv and NDVI improved the Kc(fv:NDVI)
prediction, since fv is an expression of “only-green” biomass coverage and NDVI estimates
the greenness “quality”. Both variables are related with canopy photosynthetic activity,
and non-green pixels should be not considered, since they are associated with shadow soil
and decay leaves.

It is interesting to note that the fitting model accuracy (model vs observed Kc-cGDD
data) increases with plant density due to high canopy density, improve the correlation for
the case of NDVI (R2 > 0.91), while they do not change for EVI2 and decrease for WDRVI
(R2 > 0.8). Furthermore, all VIs were less sensitive to detect Kc changes because of reduced
canopy density in the final stages (maturity in 1598 CGDD). On the other hand, these
results show that the fv: NDVI and fv: EVI2 models disaggregate the vegetation canopy
cover from the soil more effectively than fv WDRVI at vegetative stages (12 leaves).

Table 5 and Figure 7 shows the statistical parameters and the linear regression between
Kc-cGDD values and VIs multiplied by fv value (fv:NDVI, fv:EVI2, and fv:WGRDI). A strong
linear correlation with an R2 coefficient greater than 0. 80 for all cases is observed. The
model precision is high R2 values about 0.94 (Figure 6), indicating that VIs values are
sensitive to canopy density, associated with planting densities [68]. Besides, in early stages
with low levels of canopy cover, the relationship of reflectance levels with Kc values is
not very clear, due to higher variation on soil spectral properties [9]. On the other hand,
the Kcfv:NDVI model (R2 = 0.94) is more sensitive to vegetation cover change than Kcfv:EVI2

(R2 = 0.80) and Kcfv:WDRVI (R2 = 0.93) due to a reduction of the saturation of the NDVI
when leaf cover reaches high levels.

Table 5. Statistical parameters resulting from Kcfv:VIs model fitting using observed Kc-CGDD data.

fv:VI Model CGDD Mean Max Min STD

Fitting Parameters (fv:VIs)

80,000 Plants/ha 60,000 Plants/ha

a b R2 a b R2

fv:NDVI

752 0.59 0.62 0.53 0.02

1.25 0.23 0.94 1.16 0.26 0.91

1033 0.76 0.80 0.71 0.02
1206 0.7 0.74 0.64 0.02
1319 0.63 0.67 0.55 0.03
1417 0.46 0.51 0.41 0.03
1598 0.3 0.37 0.23 0.03

fv:EVI2

752 1.08 1.12 0.98 0.03

0.53 0.33 0.93 0.49 0.34 0.91

1033 1.63 1.68 1.54 0.03
1206 1.46 1.5 1.36 0.04
1319 1.26 1.34 1.14 0.05
1417 0.84 0.93 0.72 0.05
1598 0.48 0.62 0.35 0.06

fv:WDRVI

752 −0.15 −0.13 −0.21 0.02

1.18 0.91 0.80 1.19 0.86 0.83

1033 0.21 0.24 0.15 0.02
1206 0.09 0.12 0.06 0.01
1319 −0.04 0.08 −0.11 0.04
1417 −0.28 −0.23 −0.35 0.03
1598 −0.46 −0.39 −0.52 0.03
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Figure 7. Linear regression between y = KcGDD and x = fv*VIs for two planting densities for the three VIs: (a) Normalized
Difference Vegetation Index (NDVI), (b) EVI2 and (c) WDRVI. It is also shown in (c) the phenological stage with an ID digit
according to Table 4.

Similar works have reported lower R2 values with satellite images, Spiliotopoulos &
Loukas [69] obtained an R2 of 0.86 of the Kc-EVI2 relationship from Landsat 7 ETM images.
Kamble et al. [4] calculated Kc values from MODIS imagery using a simple linear regression
model Kc-NDVI with an R2 of 0.83. Gitelson [47] recommended WDRVI to estimate canopy
cover from Landsat images with higher accuracy than NDVI.

Furthermore, all VIs were less sensitive to detect Kc changes because of reduced
canopy density in the final stages (Maturity in 1598 CGDD). On the other hand, these
results show that the fv: NDVI and fv: EVI2 models disaggregate the vegetation canopy
cover from the soil more effectively than fv WDRVI at vegetative stages (12 leaves).

In this study, there are no images of the early growth stages of the crop because the
canopy cover of the crop has a minimal effect on evapotranspiration; however, it could
be interesting in future studies to monitor the crop periodically from the beginning of
plant development.

Validation of Kcfv:VIs Models

The validation of Kcfv:VI models is based on statistical analysis of performance in-
dicators shown on Figure 8 and Table 6, respectively. Our results reveal that the model
that best estimates Kc is fv:NDVI since it showed lower RMSE (0.055–0.061), higher effi-
ciency (E = 92–96%), and lower CV (7.78–6.55); fv:WRDVI and fv:EVI2 models presented
RMSE > 0.064, E < 95% and CV > 6.97.
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Table 6. Performance of Kcfv:VIs models.

Statistical Index
80,000 Plants/ha 60,000 Plants/ha

fv:NDVI fv:EVI2 fv:WDRVI fv:NDVI fv:EVI2 fv:WDRVI

CME 0.003 0.003 0.010 0.004 0.004 0.007
RMSE 0.055 0.058 0.099 0.061 0.064 0.086
MAE 0.043 0.047 0.086 0.052 0.053 0.075

E 0.960 0.955 0.871 0.929 0.923 0.860
CV (%) 6.55 6.97 11.80 7.78 8.07 10.91

All vegetation indices show a better performance in 80,000 plants/ha plots than
60,000 plants/ha plots. These results indicate that estimation of Kc in low-planting densities,
using high spatial resolution images obtained from UAV, is good as long as fv is high and soil
evaporation is negligible, as reported by Er-Raki et al. [70] and Farg et al. [14]. Furthermore,
multispectral vegetation indices (NDVI, WRDVI, and EVI2) obtained from UAV images,
and Kc values calculated (Kc-cGDD) and predicted (Kcfv:VI) follow the same trend through
the different growth stages. fv:NDVI and fv:EVI2 are similar in performance parameters
and linear regression validation, although fv:NDVI is slightly more accurate. These results
indicate that when vegetation is isolated from the ground at a high spatial resolution, NDVI
can overcome problems with high canopy density and lead to better results than EVI2 and
WDRVI. Using generated models, the spatial distribution of crop Kc can be determined.
Figure 9 shows, as an example, the maps of Kc for high density estimated for all pixels
(case 1) and for only green pixels (case 2).
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Figure 9. Spatial distribution of Kc values estimated for cases 1 and 2, from UAV images for the
high-density planting plot at CGDD = 1033.

For Figure 9 calculated spectral-based values are: fv = 0.913 and average green
NDVI = 0.733, then the estimated Kcfv:NDVI = 1.064 based on parameters indicated in
Table 5 for the Kcfv:NDVI model. The model is the most accurate model, since the Kcfv:NDVI
value is almost equal to the observed KcGDD = 1.069. In contrast, the average Kc values
without considering fv for cases 1 and 2 are 1.157 and 1.049, respectively.
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One additional advantage of the Kcfv:NDVI model is the it can be used to estimate areal
Kc that can be applied to compute water needs in irrigation management units such as
furrow, border or basin in surface irrigation, as well a tree or row-crop in micro-irrigation.

The results indicate that the use of spectral models to estimate Kc based on high
spatial and temporal resolution UAV-images, using only green pixels to compute VI and fv
crop variables, offers an accurate and simple tool for ETc assessment to support irrigation
scheduling in agricultural areas.

4. Conclusions

The results indicate that Kc prediction accuracy increases as Kc is expressed as a
function of the VF multiplied by VI, both obtained from UAV multispectral images. Split-
ting and classifying pixels of vegetation, shadow, and soil, and isolating their effects were
crucial to improve the model performance.

UAV-based images provided detailed spectral crop information to estimate Kc values
throughout the phenological season. On the other hand, the GDD approach is a powerful
Kc estimation tool to better adjust to phenology and local-scale environmental conditions.
Kc values obtained from spectral data were validated with accurate GDD-based Kc values
using experimental crop data with two planting densities.

This study indicates that three spectral-based Kc models showed good performance
(R2 > 0.80). The model that best fit the Kc values was fv:NDVI (R2 = 0.91 to 0.94). fv:EVI2
and fv:WDRVI models showed lower performance, indicating that UAV images when
vegetation is isolated from soil in high spatial resolution overcome the weaknesses of
the NDVI index. It can reach saturation spectral values due to high canopy density or
by changes in background conditions through soil brightness or surface soil moisture
content. Since the Kcfv:NDVI model is not based in one pixel but grouped pixels in a
cropped area, it can be used to estimate areal Kc which is more powerful for irrigation
management purposes.

This study concludes that the use of spectral models for Kc estimation based on
high spatial and temporal resolution reflectance values, once they are validated locally
with experimental data, offers a powerful and simple tool for ETc estimation to support
irrigation scheduling in agricultural areas.
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